Un commutateur 2,5G gère la priorisation du trafic réseau principalement grâce à l'utilisation de fonctionnalités de qualité de service (QoS), qui permettent au commutateur de différencier les différents types de trafic et de donner la priorité aux flux de données sensibles au temps ou critiques par rapport au trafic moins important. Cela garantit que les applications essentielles telles que la voix, la vidéo ou les jeux bénéficient d'un traitement préférentiel, minimisant ainsi les retards, l'instabilité et la perte de paquets. Vous trouverez ci-dessous une description détaillée du fonctionnement de ce processus :
1. Classement du trafic
La classification du trafic est la première étape de la priorisation, où le commutateur identifie et catégorise les paquets entrants. Cela peut être fait en utilisant plusieurs paramètres, notamment :
--- Classification basée sur les ports : Le commutateur attribue une priorité en fonction du port auquel un périphérique est connecté. Par exemple, un port connecté à un téléphone VoIP ou à un système de vidéoconférence peut recevoir une priorité plus élevée.
--- Classification basée sur VLAN : Si le réseau utilise des VLAN (Virtual Local Area Networks), le trafic provenant de VLAN spécifiques peut recevoir une priorité plus ou moins élevée.
--- Classification basée sur le protocole : Le commutateur peut identifier le trafic par son protocole, tel que HTTP, FTP, VoIP ou streaming vidéo, et attribuer des niveaux de priorité en fonction du type de protocole.
--- Adresse IP ou sous-réseau : Le trafic provenant d'adresses IP ou de sous-réseaux spécifiques peut être priorisé, permettant à l'administrateur réseau de donner la préférence aux serveurs, appareils ou utilisateurs critiques.
2. Marquage et marquage du trafic
Après classification, le trafic est étiqueté avec un niveau de priorité. Cela se fait généralement à l'aide des méthodes suivantes :
--- Marquage prioritaire 802.1p : Dans le cas de trames Ethernet, le switch peut utiliser le champ 802.1p dans l'en-tête VLAN pour attribuer un niveau de priorité (allant de 0 à 7). Des nombres plus élevés représentent une priorité plus élevée.
--- DSCP (Point de Code de Services Différenciés) : Pour le trafic IP, les marquages DSCP dans l'en-tête du paquet indiquent la priorité. Des valeurs DSCP plus élevées indiquent une priorité plus élevée à suivre par le commutateur et les routeurs. Ce marquage garantit que les appareils situés le long du chemin réseau reconnaissent quel trafic doit être traité comme le plus important.
3. Gestion des files d'attente
La plupart des commutateurs modernes, y compris les commutateurs 2,5G, implémentent plusieurs files d'attente pour gérer le trafic réseau. Chaque file d'attente peut avoir un niveau de priorité différent :
--- Files d'attente haute priorité : Le trafic urgent, tel que les paquets VoIP, vidéoconférence ou jeux en temps réel, est placé dans des files d'attente hautement prioritaires.
--- Files d'attente à faible priorité : Le trafic non critique tel que les transferts de fichiers, les mises à jour en arrière-plan ou le trafic de courrier électronique est placé dans des files d'attente de priorité inférieure.
Le commutateur gère la manière dont les paquets de chaque file d'attente sont transférés en fonction de la priorité attribuée. Les deux algorithmes couramment utilisés sont :
--- File d'attente prioritaire stricte (SPQ) : Dans cette méthode, les paquets des files d'attente de priorité plus élevée sont toujours transférés en premier, garantissant que le trafic critique reçoive une attention immédiate. Toutefois, cela peut entraîner un retard du trafic de priorité inférieure si le trafic de priorité élevée est continu.
--- File d'attente équitable pondérée (WFQ) : Dans cette méthode, toutes les files d'attente sont desservies, mais les files d'attente de priorité plus élevée reçoivent plus de bande passante. Cela garantit que le trafic de moindre priorité est toujours transmis, bien qu'à un rythme plus lent lorsque le réseau est encombré.
4. Organisation du trafic et contrôle de la circulation
La régulation et la régulation du trafic sont des méthodes utilisées pour gérer l'allocation de bande passante et prévenir la congestion du réseau :
--- Façonnage du trafic : Le commutateur peut limiter la vitesse à laquelle certains types de trafic sont envoyés, lissant ainsi les rafales de données et garantissant que le trafic critique dispose d'une bande passante suffisante. Par exemple, les transferts de fichiers en masse peuvent être limités pour éviter qu'ils ne consomment trop de bande passante.
--- Police : Le commutateur peut appliquer des limites de trafic, en supprimant ou en marquant les paquets qui dépassent les seuils de bande passante prédéfinis. Ceci est utile pour empêcher certains types de trafic de surcharger le réseau.
5. Gestion des embouteillages
Lorsque le commutateur détecte une congestion du réseau, il peut prendre des décisions en temps réel pour abandonner ou retarder les paquets de faible priorité afin de maintenir les performances du trafic de haute priorité. Cela se fait en utilisant différentes méthodes :
--- Détection précoce aléatoire (ROUGE) : Cette technique consiste à supprimer aléatoirement des paquets des files d'attente de faible priorité lorsque le commutateur détecte qu'une congestion est imminente, libérant ainsi de la bande passante pour le trafic de priorité plus élevée.
--- Chute de la queue : Si une file d'attente est pleine, les paquets en fin de file d'attente sont supprimés. Les files d’attente plus prioritaires sont moins susceptibles de subir des pertes de temps, car elles sont traitées plus rapidement.
6. Réservation de bande passante
--- Les commutateurs 2,5G peuvent également prendre en charge la réservation de bande passante pour les applications critiques, garantissant ainsi qu'une certaine quantité de bande passante est toujours disponible pour le trafic hautement prioritaire. Ceci peut être réalisé en utilisant des protocoles tels que RSVP (Resource Reservation Protocol) ou en configurant manuellement des politiques qui allouent de la bande passante à des types spécifiques de trafic ou d'applications.
7. Agrégation de liens
--- Dans les cas où un réseau nécessite plus de bande passante qu'un seul port ne peut en fournir, l'agrégation de liens peut être utilisée. Cela implique de combiner plusieurs connexions physiques en une seule connexion logique, augmentant ainsi la bande passante disponible et garantissant un flux de trafic plus fluide. Bien que cela ne donne pas directement la priorité au trafic, cela contribue à réduire les embouteillages en fournissant plus de capacité pour tous les types de trafic, y compris les flux hautement prioritaires.
Conclusion:
Un commutateur 2,5G gère la priorisation du trafic réseau en utilisant des fonctionnalités QoS pour classer, marquer, mettre en file d'attente et façonner le trafic, garantissant ainsi que les applications critiques telles que la voix, la vidéo et les jeux en temps réel reçoivent la bande passante nécessaire et une faible latence. En gérant intelligemment le trafic en fonction de priorités définies, le commutateur peut garantir des performances réseau fluides, même sous de lourdes charges, ce qui est essentiel dans les environnements où plusieurs types de transmission de données se produisent simultanément.