Blog

Maison

Blog

  • Quel est le rôle du PoE dans l’IoT ?
    Dec 12, 2020
    L'alimentation via Ethernet (PoE) joue un rôle crucial dans l'Internet des objets (IoT) en fournissant à la fois l'alimentation et la connectivité des données sur un seul câble Ethernet, ce qui en fait une solution efficace et évolutive pour les appareils IoT. Voici un aperçu des avantages du PoE pour l'IoT :   1. Installation simplifiée Câble unique pour l'alimentation et les données : PoE élimine le besoin de câbles d'alimentation et de données séparés. Cela simplifie l'installation, en particulier dans les zones difficiles d'accès ou dans les endroits où l'installation de lignes électriques séparées serait coûteuse ou peu pratique.     2. Rentabilité Coûts d’infrastructure réduits : Puisqu’un seul câble est nécessaire pour la transmission des données et l’alimentation électrique, les coûts d’infrastructure sont inférieurs. Le PoE permet d’alimenter des appareils distants tels que des capteurs, des caméras et des points d’accès sans nécessiter de travaux électriques coûteux.     3. Flexibilité et évolutivité Déploiement facile sur des sites distants : Le PoE peut alimenter des appareils IoT dans des emplacements distants ou extérieurs sans avoir besoin de prises de courant à proximité. Ceci est particulièrement utile pour les caméras de sécurité, les capteurs ou les passerelles IoT déployés dans les villes intelligentes, les usines ou les campus. Extension du réseau évolutive : À mesure que les réseaux IoT se développent, le PoE permet l’ajout rapide et facile de nouveaux appareils sans modifications significatives de l’infrastructure.     4. Fiabilité et gestion centralisée Alimentation électrique ininterrompue : Les appareils PoE peuvent être connectés à une alimentation sans interruption (UPS) centrale, garantissant ainsi que les appareils IoT critiques tels que les caméras de surveillance ou les contrôles d'accès continuent de fonctionner pendant les pannes de courant. Contrôle de puissance centralisé : Les responsables informatiques peuvent contrôler, surveiller et gérer à distance l'alimentation fournie à chaque appareil, facilitant ainsi le dépannage et la maintenance.     5. Efficacité énergétique Allocation intelligente de l'énergie : Les normes PoE avancées, telles que PoE+, allouent intelligemment l'énergie en fonction des besoins des appareils connectés. Cela se traduit par une utilisation plus efficace de l’énergie, ce qui est essentiel à mesure que le nombre d’appareils IoT continue de croître.     6. Prend en charge divers appareils IoT Compatibilité avec les appareils basse consommation et haute puissance : Le PoE peut alimenter une large gamme d'appareils IoT, depuis les capteurs et actionneurs basse consommation jusqu'aux appareils plus puissants tels que les caméras IP, les systèmes d'éclairage et l'affichage numérique.     Cas d'utilisation clés dans l'IoT : Bâtiments intelligents : Le PoE est utilisé pour alimenter des appareils tels que des capteurs, des systèmes de sécurité, des commandes CVC et de l'éclairage, rendant les bâtiments plus économes en énergie et plus faciles à gérer. Villes intelligentes : Dans les applications de villes intelligentes, le PoE alimente les caméras de surveillance, les capteurs environnementaux et les systèmes de gestion du trafic. IoT industriel : PoE simplifie le déploiement de dispositifs tels que les capteurs de surveillance, les lecteurs RFID et les systèmes d'automatisation dans les usines et les entrepôts.   En résumé, le PoE permet un déploiement transparent, rentable et évolutif d'appareils IoT, soutenant la croissance des systèmes connectés dans les villes, les bâtiments et les industries intelligents.
    EN SAVOIR PLUS
  • Quelles sont les principales caractéristiques des commutateurs PoE ?
    Dec 10, 2020
    Les commutateurs PoE (Power over Ethernet) offrent une gamme de fonctionnalités qui améliorent à la fois l'alimentation électrique et les fonctionnalités réseau. Ces fonctionnalités font des commutateurs PoE un choix polyvalent pour alimenter et connecter divers appareils via Ethernet. Voici les principales caractéristiques à prendre en compte lors de l’évaluation des commutateurs PoE :   1. Capacité d'alimentation via Ethernet (PoE) Transmission de données et de puissance : Un commutateur PoE fournit à la fois l'alimentation et les données via un seul câble Ethernet, réduisant ainsi le besoin d'une infrastructure électrique supplémentaire. Prise en charge des normes PoE : --- PoE (IEEE 802.3af) : jusqu'à 15,4 W par port pour les appareils tels que les téléphones VoIP et les simples caméras IP. --- PoE+ (IEEE 802.3at) : jusqu'à 30 W par port pour les appareils tels que les caméras IP haute définition et les points d'accès sans fil. --- PoE++ (IEEE 802.3bt) : fournit 60 W ou 100 W par port pour les appareils gourmands en énergie tels que les caméras PTZ, l'éclairage LED et les appareils IoT.     2. Nombre de ports et budget PoE Nombre de ports : Les commutateurs PoE sont livrés avec une variété de configurations de ports (généralement 4, 8, 16, 24 ou 48 ports) pour s'adapter au nombre d'appareils que vous devez connecter et alimenter. Budget de puissance PoE : La puissance totale disponible pour tous les appareils connectés est appelée budget d’alimentation PoE. Des budgets énergétiques plus élevés prennent en charge davantage d’appareils ou d’appareils gourmands en énergie. Il est important de garantir que le budget énergétique du commutateur est suffisant pour répondre aux besoins de votre réseau.     3. Géré ou non géré Commutateurs PoE gérés : Ceux-ci offrent des fonctionnalités avancées telles que les VLAN, la qualité de service (QoS) et la surveillance du réseau, donnant aux administrateurs un meilleur contrôle sur les performances et la sécurité du réseau. Commutateurs PoE non gérés : Appareils plus simples, plug-and-play, sans options de configuration avancées, idéaux pour les réseaux petits ou moins complexes.     4. Gestion et allocation de l'énergie Priorisation de la puissance : De nombreux commutateurs PoE permettent de donner la priorité à l'alimentation de ports spécifiques, garantissant ainsi que les appareils critiques (tels que les caméras IP ou les points d'accès sans fil) restent alimentés en cas de limite de budget énergétique. Planification de l'alimentation : Certains commutateurs PoE gérés permettent aux utilisateurs de planifier le moment où l'alimentation est fournie aux appareils, contribuant ainsi à réduire la consommation d'énergie en dehors des heures d'ouverture.     5. Contrôle et surveillance des ports PoE Contrôle de l'alimentation par port : Permet aux administrateurs d'activer ou de désactiver PoE pour des ports individuels, offrant ainsi flexibilité et contrôle sur la distribution d'énergie dans le réseau. Surveillance de l'alimentation : Les commutateurs PoE gérés offrent souvent une surveillance en temps réel de la consommation électrique sur chaque port, permettant une utilisation plus efficace du budget énergétique du commutateur.     6. Alimentation et redondance du réseau Double alimentation : Certains commutateurs PoE offrent des options d'alimentation redondante, garantissant un fonctionnement continu en cas de panne d'alimentation. Agrégation de liens : Cette fonctionnalité permet de combiner plusieurs ports Ethernet pour augmenter la bande passante et les capacités de basculement, améliorant ainsi la fiabilité et les performances du réseau.     7. Prise en charge des VLAN Réseau local virtuel (VLAN) : Les commutateurs PoE gérés prennent souvent en charge les VLAN, qui vous permettent de segmenter le trafic réseau, d'améliorer la sécurité et de prioriser la bande passante pour les appareils critiques tels que les caméras IP ou les téléphones VoIP.     8. Qualité de service (QoS) Priorisation du trafic : QoS permet de prioriser le trafic réseau en fonction des besoins des applications. Par exemple, vous pouvez donner la priorité aux appels VoIP ou aux flux vidéo par rapport aux données moins critiques, garantissant ainsi des performances fluides pour les applications sensibles à la latence.     9. Protection contre les surtensions Protection contre les surtensions intégrée : Certains commutateurs PoE offrent une protection contre les surtensions et les pics de tension, qui peuvent endommager à la fois le commutateur et les appareils connectés. Ceci est particulièrement important pour les installations extérieures ou dans les zones où l'alimentation électrique est instable.     10. Détection automatique PoE PoE à détection automatique : Les commutateurs PoE détectent automatiquement si un appareil connecté est compatible PoE et fournissent l'alimentation en conséquence. Cela évite d'endommager les appareils non PoE et garantit que seule l'alimentation nécessaire est fournie.     11. Commutation de couche 2 et de couche 3 Commutation de couche 2 : Fournit des fonctions de commutation de base telles que le transfert de trames Ethernet, le marquage VLAN et l'apprentissage d'adresse MAC. Convient aux réseaux petits à moyens. Commutation de couche 3 : Combine les capacités de routage et de commutation, permettant au commutateur d'acheminer le trafic entre différents sous-réseaux ou VLAN. Ceci est important pour les réseaux plus grands qui nécessitent une gestion du trafic plus avancée.     12. Fonctionnement sans ventilateur ou silencieux Conception sans ventilateur : Certains commutateurs PoE sont conçus pour fonctionner sans ventilateurs, ce qui les rend silencieux et idéaux pour les environnements sensibles au bruit tels que les bureaux ou les salles de conférence.     13. Fonctionnalités de sécurité Sécurité portuaire : Les commutateurs gérés fournissent souvent des fonctionnalités de sécurité des ports pour contrôler quels appareils peuvent se connecter à des ports spécifiques, réduisant ainsi le risque d'accès non autorisé. Listes de contrôle d'accès (ACL) : Ceux-ci permettent aux administrateurs réseau de définir des règles pour contrôler quels types de trafic peuvent entrer ou sortir du réseau via des ports spécifiques.     14. Options de montage Montable en rack ou sur bureau : Les commutateurs PoE se présentent sous différents formats. Les commutateurs montés en rack sont idéaux pour les centres de données ou les installations de plus grande taille, tandis que les commutateurs de bureau conviennent aux configurations plus petites ou aux installations sans rack.     15. Ports de liaison montante Ports de liaison montante haute vitesse : De nombreux commutateurs PoE sont dotés de ports de liaison montante dédiés (généralement des ports SFP ou fibre) pour la connexion à des réseaux fédérateurs à plus haut débit, garantissant ainsi une transmission rapide des données et une évolutivité.     Résumé des principales fonctionnalités : Fonctionnalité Description Normes PoE Prend en charge IEEE 802.3af, 802.3at (PoE+), 802.3bt (PoE++) Nombre de ports Varie (4, 8, 16, 24, 48 ports) Budget de puissance  Puissance totale disponible sur tous les ports, varie selon le commutateur Géré ou non géré Managed offre des contrôles avancés ; non géré est plus simple Gestion de l'alimentation Priorisation, planification, contrôle par port Prise en charge des VLAN Segmentation du trafic et efficacité du réseau Qualité de service (QoS) Priorisation du trafic pour une VoIP/vidéo fluide Protection contre les surtensions Intégré pour protéger les appareils contre les surtensions Fonctionnalités de sécurité  Sécurité des ports, ACL pour le contrôle du trafic Options de montage Options de bureau ou de montage en rack     Conclusion Lors de la sélection d'un commutateur PoE, tenez compte des fonctionnalités spécifiques qui correspondent aux besoins de votre réseau, telles que le nombre d'appareils, les besoins en énergie et les capacités de gestion. Les commutateurs gérés offrent davantage de contrôle et de surveillance, tandis que les commutateurs non gérés sont plus faciles à déployer pour des configurations plus simples.
    EN SAVOIR PLUS
  • Comment choisir entre des commutateurs PoE et non-PoE ?
    Nov 20, 2020
    Le choix entre les commutateurs PoE (Power over Ethernet) et les commutateurs non PoE dépend de vos besoins spécifiques, de votre budget et des appareils de votre réseau. Voici une comparaison des facteurs pour vous aider à orienter votre décision :   1. Exigences relatives à l'appareil Commutateur PoE : Si votre réseau comprend des appareils nécessitant une alimentation via Ethernet, tels que des caméras IP, des téléphones VoIP, des points d'accès sans fil (WAP) ou des appareils IoT, un commutateur PoE est nécessaire. Il fournit à la fois les données et l'alimentation via un seul câble Ethernet, simplifiant ainsi l'installation et réduisant les coûts de câblage. Commutateur non PoE : Si votre réseau se compose uniquement de périphériques tels que des ordinateurs, des imprimantes ou des serveurs qui ne nécessitent pas d'alimentation via Ethernet, un commutateur non PoE suffit.     2. Considérations budgétaires Commutateur PoE : Les commutateurs PoE coûtent généralement plus cher que les commutateurs non PoE en raison de leurs capacités d'alimentation supplémentaires. Cependant, l'investissement initial plus élevé peut être compensé par des coûts d'installation réduits, car moins de prises de courant et de câbles sont nécessaires. Commutateur non PoE : Les commutateurs non PoE sont plus abordables et adaptés aux réseaux où les appareils sont déjà alimentés par des moyens traditionnels (par exemple, des prises murales).     3. Facilité d’installation et flexibilité Commutateur PoE : Les commutateurs PoE simplifient l'installation, en particulier pour les appareils situés dans des endroits difficiles d'accès où l'alimentation électrique serait difficile ou coûteuse. Ils offrent une flexibilité pour étendre ou déplacer des appareils sans recâblage. Commutateur non PoE : L'installation nécessite à la fois des câbles Ethernet et d'alimentation, ce qui peut compliquer la configuration, en particulier dans les réseaux plus grands ou dans les bâtiments dépourvus de prises de courant suffisantes.     4. Capacité électrique (normes PoE) --- Switch PoE : Si vous choisissez PoE, vous devrez prendre en compte les normes PoE prises en charge par le switch : --- PoE (IEEE 802.3af) : fournit jusqu'à 15,4 W par port, adapté aux appareils tels que les téléphones VoIP ou les caméras IP de base. --- PoE+ (IEEE 802.3at) : fournit jusqu'à 30 W par port, idéal pour les appareils plus gourmands en énergie tels que les caméras panoramiques, inclinables et zoomables ou les points d'accès sans fil. --- PoE++ (IEEE 802.3bt) : prend en charge jusqu'à 60 W ou 100 W par port pour des appareils encore plus puissants comme l'éclairage LED ou les systèmes d'automatisation des bâtiments. Commutateur non PoE : Les considérations d’alimentation ne sont pas pertinentes ici puisque le commutateur n’alimente pas les appareils connectés.     5. Évolutivité du réseau Commutateur PoE : Offre plus d'évolutivité, car il vous permet d'ajouter des appareils alimentés (caméras IP, WAP) sans avoir besoin d'une infrastructure électrique supplémentaire. Ceci est particulièrement utile pour les entreprises en croissance ou pour pérenniser votre réseau. Commutateur non PoE : L'expansion peut nécessiter des modifications importantes de votre infrastructure électrique si vous décidez ultérieurement d'intégrer des appareils nécessitant PoE, tels que des systèmes de sécurité ou des appareils IoT.     6. Environnement et cas d'utilisation Commutateur PoE : Idéal pour les environnements nécessitant plusieurs appareils compatibles PoE, tels que : --- Systèmes de surveillance avec caméras IP. --- Environnements de bureau utilisant des téléphones VoIP et des points d'accès sans fil. --- Bâtiments intelligents dotés d'appareils IoT pour l'éclairage, la CVC ou la sécurité. Commutateur non PoE : Convient à la mise en réseau générale dans des environnements où les appareils disposent déjà de sources d'alimentation séparées ou aux réseaux axés sur les connexions de données uniquement, tels que : --- Configurations de bureau traditionnelles avec ordinateurs et imprimantes. --- Centres de données avec solutions d'alimentation dédiées.     7. Sauvegarde et gestion de l'alimentation Commutateur PoE : Offre une gestion centralisée de l'alimentation et une intégration plus facile avec des alimentations sans interruption (UPS), garantissant que les appareils critiques tels que les caméras IP ou les téléphones VoIP restent alimentés en cas de panne. Commutateur non PoE : Nécessite des solutions d’alimentation distinctes, ce qui rend la gestion plus difficile en cas de panne de courant.   Tableau récapitulatif Facteur Commutateur PoE Commutateur non PoE Types d'appareils Caméras IP, téléphones VoIP, WAP, IoT Ordinateurs, imprimantes, appareils de données uniquement Coût Coût initial plus élevé Plus abordable Installation Plus simple, moins de câbles, pas besoin de prises de courant Nécessite des câbles d'alimentation et de données séparés Normes de puissance PoE (15,4 W), PoE+ (30 W), PoE++ (60-100 W) Pas de fourniture de puissance Évolutivité Flexible pour les futurs appareils PoE Évolutivité limitée sans recâblage Alimentation de secours Intégration UPS centralisée et plus facile Nécessite des solutions UPS distinctes     Décision finale --- Choisissez un commutateur PoE si vous envisagez d'alimenter des appareils tels que des caméras IP, des WAP ou des téléphones VoIP directement via le réseau et souhaitez un câblage simplifié. --- Choisissez un commutateur non PoE si votre réseau est constitué d'appareils traditionnels qui ne nécessitent pas PoE, ou si le coût est une préoccupation majeure et que votre cas d'utilisation n'implique pas d'appareils PoE.   La prise en compte de la croissance future de votre réseau et de l'intégration potentielle de périphériques PoE peut également influencer votre décision.
    EN SAVOIR PLUS
  • Quelles industries utilisent le plus le PoE ?
    Nov 20, 2020
      L'alimentation via Ethernet (PoE) est largement utilisée dans plusieurs secteurs en raison de sa capacité à fournir à la fois des données et de l'alimentation via un seul câble Ethernet, ce qui simplifie l'installation et réduit les coûts. Voici les principales industries qui dépendent le plus du PoE :   1. Sécurité et surveillance Caméras IP : Le PoE est couramment utilisé pour alimenter les caméras IP des systèmes de vidéosurveillance. Il élimine le besoin de sources d'alimentation séparées, ce qui facilite l'installation de caméras dans des emplacements éloignés ou extérieurs. Systèmes de contrôle d'accès : De nombreux systèmes de contrôle d'accès, notamment les lecteurs de cartes-clés et les scanners biométriques, utilisent PoE pour garantir qu'ils restent opérationnels sans avoir besoin d'une infrastructure électrique supplémentaire.     2. Télécommunications et réseaux Téléphones VoIP : Le PoE alimente les téléphones VoIP (Voice over Internet Protocol), réduisant le nombre de câbles nécessaires et permettant un placement flexible des téléphones dans un bureau. Points d'accès sans fil (WAP) : Le PoE est largement utilisé dans les réseaux, en particulier pour les points d'accès sans fil, ce qui leur permet d'être installés au plafond ou dans d'autres endroits sans accès aux prises électriques.     3. Bâtiments intelligents et IoT Systèmes d'automatisation du bâtiment : Dans les bâtiments intelligents, le PoE alimente les systèmes de contrôle de l’éclairage, de CVC et de surveillance environnementale, qui font partie des solutions IoT intégrées pour l’efficacité énergétique. Éclairage intelligent : Les systèmes d'éclairage LED compatibles PoE deviennent de plus en plus populaires pour la gestion intelligente et économe en énergie de l'éclairage dans les espaces commerciaux et industriels.     4. Soins de santé Dispositifs médicaux et équipement de surveillance : Les hôpitaux utilisent le PoE pour des appareils tels que les systèmes d'appel infirmier, les équipements de surveillance des patients et les applications de soins de santé connectées, garantissant ainsi un fonctionnement cohérent sans câblage complexe.     5. Éducation Affichage numérique et écrans interactifs : Les établissements d'enseignement utilisent le PoE pour alimenter des tableaux blancs interactifs, des affichages numériques et d'autres outils pédagogiques connectés au réseau dans les salles de classe et les amphithéâtres. Surveillance et sécurité : Les écoles et les campus utilisent également le PoE pour les systèmes de sécurité, notamment les caméras IP et les systèmes de communication d'urgence.     6. Hospitalité Systèmes Wi-Fi et de divertissement pour les invités : Les hôtels et centres de villégiature utilisent le PoE pour alimenter les points d'accès Wi-Fi et les systèmes de divertissement dans les chambres, ainsi que les dispositifs d'éclairage et de sécurité en réseau.     7. Vente au détail Systèmes de point de vente (POS) : Les environnements de vente au détail utilisent PoE pour alimenter les terminaux de point de vente, les écrans numériques et les caméras de sécurité, rationalisant ainsi la configuration et réduisant l'encombrement de plusieurs câbles.     8. Industriel et manufacturier Systèmes d'automatisation : Le PoE alimente les appareils IoT industriels et les systèmes d’automatisation utilisés dans les usines pour surveiller et contrôler les lignes de production. Caméras IP : Comme d’autres industries, les installations manufacturières utilisent le PoE pour la surveillance, en particulier dans les endroits éloignés ou dangereux.     Le PoE est privilégié dans ces secteurs pour sa simplicité, sa flexibilité et ses avantages en matière de réduction des coûts. La possibilité d’installer des appareils sans avoir besoin de prises électriques en fait une solution idéale pour étendre efficacement les réseaux.    
    EN SAVOIR PLUS
  • Quelle est la différence entre PoE et PoE+ ?
    Nov 18, 2020
     Power over Ethernet (PoE) et Power over Ethernet Plus (PoE+) sont tous deux des normes de fourniture d'énergie et de données via des câbles Ethernet, mais ils diffèrent en termes de puissance de sortie et de capacités d'application. Voici une comparaison détaillée : 1. Livraison de puissancePoE (IEEE 802.3af) :--- Puissance de sortie maximale (au PSE - Power Sourcing Equipment) : 15,4 W par port--- Puissance disponible pour les appareils (sur PD - Appareil alimenté) : 12,95 W (après prise en compte de la perte de puissance sur le câble)--- Applications typiques : caméras IP de base, téléphones VoIP et points d'accès sans fil à faible consommation.PoE+ (IEEE 802.3at) :--- Puissance de sortie maximale (au PSE) : 30 W par port--- Puissance disponible pour les appareils (au PD) : 25,5 W--- Applications typiques : appareils de plus grande puissance tels que les caméras PTZ (Pan-Tilt-Zoom), les points d'accès sans fil avancés et les visiophones.  2. Plage de tensionPoE :--- Plage de tension : 44-57 V CC.PoE+ :--- Plage de tension : 50-57 V CC.  3. Allocation et utilisation de l'énergiePoE :--- Allocation de puissance : fournit suffisamment de puissance pour les appareils ayant des besoins en énergie inférieurs.PoE+ :--- Allocation de puissance : fournit une puissance supplémentaire pour les appareils ayant des besoins en énergie plus élevés, permettant l'utilisation d'équipements plus avancés ou gourmands en énergie.  4. CompatibilitéPoE :--- Compatibilité descendante : PoE+ (802.3at) et PoE++ (802.3bt) peuvent alimenter des appareils conformes à la norme PoE (802.3af).PoE+ :--- Compatibilité descendante : PoE+ peut alimenter des appareils conformes à la norme PoE (802.3af).  5. Câble et infrastructurePoE :--- Exigences en matière de câbles : utilise généralement des câbles Cat5e ou supérieur.PoE+ :--- Exigences en matière de câbles : utilise également des câbles Cat5e ou supérieur, mais avec la puissance accrue, des câbles de meilleure qualité (Cat6 ou Cat6a) sont recommandés pour maintenir les performances et réduire les pertes de puissance.  6. Scénarios d'applicationPoE :--- Cas d'utilisation : idéal pour les appareils réseau de base qui ne nécessitent pas de puissance importante, tels que les caméras IP d'entrée de gamme, les téléphones VoIP de base et les simples points d'accès sans fil.PoE+ :--- Cas d'utilisation : convient aux appareils ayant des demandes de puissance plus élevées, tels que les caméras PTZ avancées, les points d'accès sans fil hautes performances et les appareils dotés de chauffages ou d'éclairages intégrés.  Tableau récapitulatifFonctionnalitéPoE (IEEE 802.3af)PoE+ (IEEE 802.3at)Puissance de sortie maximale15,4 W par port30W par portPuissance disponible pour les appareils 12,95 W25,5 WPlage de tension44-57 V CC50-57 V CCAppareils typiquesCaméras IP de base, téléphones VoIPCaméras PTZ, WAP avancés, visiophonesCompatibilitéCompatible PoE+Rétrocompatible avec PoEType de câbleCat5e ou supérieurCat5e ou supérieur (Cat6 recommandé)  Choisir entre PoE et PoE+Le PoE convient à la plupart des appareils réseau standard ayant des besoins en énergie inférieurs. Il est économique et répond aux exigences des appareils IP de base.PoE+ doit être utilisé lorsque les appareils nécessitent plus de puissance, comme les caméras hautes performances et les équipements réseau avancés. Il garantit que les appareils reçoivent suffisamment de puissance pour bénéficier de toutes les fonctionnalités et de fonctionnalités supplémentaires.  En résumé, PoE+ offre plus de puissance et de flexibilité que PoE, prenant en charge une plus large gamme d'appareils et d'applications plus puissants.  
    Balises chaudes : PoE POE+ 802.3af 802.3at 15,4 W 25,5 W
    EN SAVOIR PLUS
  • Jusqu’où le PoE peut-il transmettre de l’énergie et des données ?
    Nov 16, 2020
      L'alimentation via Ethernet (PoE) peut transmettre à la fois l'alimentation et les données via des câbles Ethernet standard jusqu'à une distance maximale de 100 mètres (328 pieds). Voici un aperçu des principaux facteurs influençant cette distance :   1. Limites de distance : Câble Ethernet standard : La distance maximale de transmission de l'alimentation et des données PoE est de 100 mètres à l'aide de câbles Ethernet standard (Cat5e, Cat6 ou supérieur). Alimentation et intégrité des données : À cette distance, les signaux d'alimentation et de données restent fiables et répondent aux normes de performances de la plupart des applications réseau.     2. Facteurs affectant la distance de transmission : Qualité du câble : Les câbles de qualité supérieure (par exemple, Cat6 ou Cat6a) peuvent mieux maintenir l'intégrité du signal sur de longues distances par rapport aux câbles de qualité inférieure (par exemple, Cat5). Type de câble : L'utilisation de câbles à paires torsadées blindés peut réduire les interférences électromagnétiques (EMI) et maintenir les performances sur de plus longues distances. Exigences d'alimentation : Des niveaux de puissance plus élevés (par exemple, PoE+ ou PoE++) peuvent subir des chutes de tension sur de plus longues distances, ce qui peut affecter les performances. L'utilisation de câbles de haute qualité permet d'atténuer ce problème.     3. Extension du PoE au-delà de 100 mètres : Extensions PoE : Des appareils appelés prolongateurs PoE peuvent être utilisés pour étendre la portée du PoE jusqu'à 100 mètres supplémentaires. Ils reçoivent les signaux PoE, les amplifient, puis transmettent le signal étendu. Répéteurs PoE : Semblables aux prolongateurs, les répéteurs PoE régénèrent le signal pour maintenir la qualité de l’alimentation et de la transmission des données sur de plus longues distances. Injecteurs intermédiaires : Dans certains cas, des injecteurs ou des répéteurs Midspan peuvent être utilisés pour amplifier le signal au milieu du parcours de câble.     4. Solutions alternatives pour des distances plus longues : Câblage à fibre optique : Pour des distances supérieures à 100 mètres, des câbles à fibres optiques peuvent être utilisés pour transmettre des données sur des distances beaucoup plus longues. Le PoE peut être combiné avec des convertisseurs fibre vers Ethernet pour combler le fossé. Ethernet sur coaxial : Certains systèmes utilisent Ethernet sur un câble coaxial pour étendre la portée, même si cela nécessite généralement un équipement supplémentaire.     Considérations pratiques : Facteurs environnementaux : Assurez-vous que les câbles sont installés dans des environnements qui n’introduisent pas d’interférences excessives ou de contraintes environnementales susceptibles d’avoir un impact sur les performances. Budget de puissance : Pour les installations PoE, tenez compte du budget d'alimentation total du commutateur ou de l'injecteur PoE et des besoins en énergie de tous les appareils connectés.   En résumé, PoE peut transmettre de manière fiable l’énergie et les données via des câbles Ethernet jusqu’à 100 mètres. Pour les applications nécessitant de plus grandes distances, des prolongateurs PoE ou des solutions alternatives telles que le câblage à fibre optique peuvent être utilisées pour surmonter les limitations.    
    EN SAVOIR PLUS
  • Le PoE peut-il être utilisé pour les caméras de surveillance ?
    Nov 11, 2020
      Oui, l'alimentation via Ethernet (PoE) est couramment utilisée pour les caméras de surveillance et convient parfaitement à cette application. Voici pourquoi le PoE est bénéfique pour les caméras de surveillance IP :   Avantages de l'utilisation de PoE pour les caméras de surveillance : 1.Installation simplifiée : --- Câble unique : PoE permet de fournir à la fois l'alimentation et les données via un seul câble Ethernet (Cat5e, Cat6 ou supérieur), simplifiant l'installation et réduisant le besoin de câblage d'alimentation supplémentaire. --- Câblage réduit : élimine le besoin d'alimentations et de prises séparées, ce qui peut être particulièrement utile dans les endroits où l'installation de lignes électriques supplémentaires n'est pas pratique. 2. Rentable : --- Coûts d'installation inférieurs : réduit les coûts de main-d'œuvre et de matériaux associés à l'installation de lignes électriques et de prises séparées. --- Moins de composants : nécessite moins de composants (par exemple, pas besoin d'adaptateurs d'alimentation ou d'injecteurs séparés), ce qui peut réduire les coûts globaux du système. 3.Flexibilité : --- Placement de l'appareil : permet une plus grande flexibilité dans le placement de la caméra. Les caméras peuvent être installées dans des endroits éloignés des sources d’alimentation mais toujours à portée du câble Ethernet. --- Relocalisation facile : les caméras peuvent être facilement déplacées ou ajoutées au réseau sans avoir besoin d'installer de nouvelles prises de courant. 4.Fiabilité : --- Alimentation stable : fournit une source d'alimentation fiable et constante, ce qui est crucial pour le fonctionnement continu des caméras de surveillance. --- Gestion centralisée de l'alimentation : l'alimentation peut être gérée à partir d'un commutateur ou d'un injecteur PoE central, ce qui facilite la surveillance et le contrôle de l'alimentation. 5.Évolutivité : --- Systèmes extensibles : PoE prend en charge une extension facile des systèmes de surveillance. Des caméras supplémentaires peuvent être ajoutées au réseau sans recâblage majeur. --- Intégration réseau : s'intègre de manière transparente à l'infrastructure réseau existante, permettant des solutions de surveillance évolutives. 6.Gestion à distance : --- Contrôle de l'alimentation : de nombreux commutateurs PoE permettent la gestion et la surveillance de l'alimentation à distance, ce qui peut être utile pour le dépannage et la maintenance des systèmes de surveillance. --- Power Cycling : un cycle d'alimentation à distance peut être effectué pour réinitialiser les caméras sans avoir besoin d'un accès physique.     Types de normes PoE pour les caméras de surveillance : --- IEEE 802.3af (PoE) : fournit jusqu'à 15,4 W par port, ce qui convient aux caméras IP de base ayant une consommation d'énergie inférieure. --- IEEE 802.3at (PoE+) : fournit jusqu'à 30 W par port, adapté aux caméras PTZ (Pan-Tilt-Zoom) et autres équipements de surveillance de plus grande puissance. --- IEEE 802.3bt (PoE++) : offre jusqu'à 60 W (Type 3) ou 100 W (Type 4) par port, qui peut prendre en charge des caméras avancées avec des fonctionnalités supplémentaires ou plusieurs accessoires.     Considérations relatives à l'utilisation de PoE avec des caméras de surveillance : Exigences d'alimentation : Assurez-vous que le commutateur ou l'injecteur PoE peut fournir une alimentation suffisante aux caméras, en particulier si vous utilisez des modèles haute puissance ou des caméras PTZ. Qualité du câble : Utilisez des câbles Ethernet de haute qualité (Cat5e ou supérieur) pour garantir une alimentation électrique et une transmission de données fiables sur de longues distances. Limites de distance : Les câbles Ethernet standard prennent en charge PoE jusqu'à 100 mètres (328 pieds). Pour des distances plus longues, envisagez d'utiliser des prolongateurs PoE ou d'autres solutions.     En résumé, le PoE est un excellent choix pour alimenter les caméras de surveillance en raison de sa simplicité, de sa rentabilité et de sa flexibilité. Il permet une installation et une gestion faciles, ce qui en fait une solution privilégiée pour les systèmes de surveillance IP modernes.    
    EN SAVOIR PLUS
  • Quelles sont les applications du PoE dans les villes intelligentes ?
    Nov 10, 2020
      L'alimentation via Ethernet (PoE) joue un rôle crucial dans l'infrastructure des villes intelligentes en fournissant un moyen flexible, rentable et efficace d'alimenter une large gamme d'appareils en réseau. Voici quelques applications clés du PoE dans les villes intelligentes :   1. Éclairage intelligent Application: Lampadaires intelligents et systèmes d’éclairage extérieur. Avantages: PoE permet la gestion et le contrôle centralisés de l’éclairage public. Il prend en charge les lumières LED économes en énergie et permet la surveillance, la gradation et la planification à distance. Exemple: Systèmes d'éclairage adaptatifs qui ajustent la luminosité en fonction de la circulation ou des conditions météorologiques.     2. Systèmes de surveillance et de sécurité Application: Caméras IP, systèmes de surveillance et caméras de reconnaissance de plaques d'immatriculation. Avantages: PoE simplifie l'installation des caméras de sécurité en éliminant le besoin de câbles d'alimentation séparés. Il prend également en charge les caméras haute résolution et garantit une alimentation fiable. Exemple: Réseaux de vidéosurveillance à l'échelle de la ville pour la surveillance du trafic et la prévention de la criminalité.     3. Gestion intelligente du trafic Application: Contrôleurs de feux de circulation, capteurs et feux de signalisation intelligents. Avantages: Le PoE permet le déploiement de systèmes avancés de gestion du trafic capables de s'adapter aux conditions de circulation en temps réel, améliorant ainsi la fluidité du trafic et réduisant les embouteillages. Exemple: Feux de circulation qui s'ajustent en fonction de la densité et du débit du trafic.     4. Surveillance environnementale Application: Capteurs de qualité de l'air, stations météorologiques et capteurs environnementaux. Avantages: Le PoE alimente ces capteurs, permettant aux villes de collecter des données sur la qualité de l'air, la température, l'humidité et d'autres facteurs environnementaux. Ces données aident à prendre des décisions éclairées en matière de santé publique et d’urbanisme. Exemple: Des capteurs qui surveillent les niveaux de pollution de l’air et fournissent des alertes en temps réel.     5. Points d'accès Wi-Fi publics Application: Points d'accès Wi-Fi dans les espaces publics tels que les parcs, les places et les centres de transport. Avantages: PoE facilite l'installation de points d'accès Wi-Fi en fournissant l'alimentation via le même câble Ethernet utilisé pour les données, simplifiant ainsi l'installation et réduisant les coûts. Exemple: Wi-Fi gratuit dans les parcs de la ville et dans les centres-villes pour améliorer la connectivité publique.     6. Kiosques intelligents et affichage numérique Application: Kiosques d'information interactifs, affichage numérique et panneaux d'affichage électroniques. Avantages: Le PoE alimente ces appareils tout en fournissant également une connectivité réseau, permettant l'affichage de contenus dynamiques tels que des informations sur la ville, des publicités et des mises à jour en temps réel. Exemple: Kiosques numériques fournissant des informations sur les événements locaux et les services publics.     7. Systèmes d'automatisation des bâtiments Application: Contrôles de bâtiments intelligents pour les systèmes CVC, l'éclairage et la sécurité. Avantages: Le PoE alimente les capteurs et contrôleurs d’automatisation des bâtiments, permettant un fonctionnement économe en énergie et une gestion à distance des systèmes du bâtiment. Exemple: Systèmes de climatisation automatisés dans les bâtiments et installations publics.     8. Systèmes d'intervention d'urgence Application: Téléphones d'urgence, systèmes d'alerte et systèmes de sonorisation. Avantages: Le PoE garantit que ces appareils critiques restent alimentés et opérationnels en cas d’urgence, améliorant ainsi les temps de réponse et la sécurité publique. Exemple: Cabines d'appel d'urgence dans les parcs urbains ou le long des autoroutes.     9. Plateformes de transport Application: Systèmes de billetterie intelligents, affichages d'informations et systèmes de sécurité dans les aéroports, les gares et les gares routières. Avantages: Le PoE simplifie le déploiement et la gestion des appareils dans les centres de transport, améliorant ainsi l'efficacité et l'expérience des voyageurs. Exemple: Panneaux d'information numériques et distributeurs automatiques de billets.     10. Solutions de stationnement intelligentes Application: Parcomètres intelligents, capteurs de présence et systèmes de guidage de stationnement. Avantages: Le PoE alimente les dispositifs de gestion du stationnement, permettant une surveillance en temps réel des places de stationnement et fournissant des informations aux conducteurs. Exemple: Des capteurs qui détectent les places de stationnement disponibles et guident les conducteurs vers les places libres.     Avantages du PoE dans les villes intelligentes : 1. Coûts d'installation réduits : PoE combine les données et l'alimentation électrique sur un seul câble, réduisant ainsi le besoin de câblage supplémentaire et minimisant la complexité de l'installation. 2. Flexibilité et évolutivité : déployez et faites évoluer facilement les appareils dans toute la ville, avec la possibilité d'ajouter ou de déplacer des appareils sans recâblage majeur. 3. Fiabilité : fournit une source d'alimentation stable et fiable pour les infrastructures critiques, garantissant ainsi un fonctionnement ininterrompu des systèmes de ville intelligente. 4. Gestion centralisée : permet une surveillance et un contrôle centralisés des appareils, permettant une gestion et une optimisation efficaces des services de la ville. 5. Efficacité énergétique : prend en charge les appareils économes en énergie et les systèmes intelligents qui peuvent s'adapter aux conditions changeantes, contribuant ainsi aux économies d'énergie globales et à la durabilité.   En résumé, le PoE fait partie intégrante du développement et de la gestion des villes intelligentes, permettant un large éventail d'applications intelligentes qui améliorent la vie urbaine, améliorent l'efficacité et soutiennent les initiatives de développement durable.    
    EN SAVOIR PLUS
  • Quelle est la puissance maximale que le PoE peut fournir ?
    Oct 20, 2020
    La puissance maximale que Power over Ethernet (PoE) peut fournir dépend de la norme PoE spécifique utilisée. La dernière norme offre une puissance nettement supérieure à celle des versions précédentes. Voici une répartition des limites de puissance selon les différentes normes PoE :   1. IEEE 802.3af (PoE) Puissance de sortie maximale (au PSE - Power Sourcing Equipment) : 15,4 W par port Alimentation disponible pour les appareils (au niveau du PD - Appareil alimenté) : 12,95 W Cas d'utilisation : Appareils à faible consommation tels que les téléphones VoIP, les caméras IP de base et les points d'accès sans fil.     2. IEEE 802.3at (PoE+, PoE Plus) Puissance de sortie maximale : 30W par port Puissance disponible pour les appareils : 25,5 W Cas d'utilisation : Appareils de moyenne puissance tels que les caméras PTZ (Pan-Tilt-Zoom), les points d'accès sans fil avancés et les visiophones.     3. IEEE 802.3bt (PoE++, PoE 4 paires) Type 3 (PoE++) : --- Puissance de sortie maximale : 60 W par port ---Puissance disponible pour les appareils : 51 W --- Cas d'utilisation : points d'accès sans fil hautes performances, systèmes de vidéoconférence multi-flux et caméras PTZ. Type 4 (PoE++) : --- Puissance de sortie maximale : 100 W par port ---Puissance disponible pour les appareils : 71,3 W --- Cas d'utilisation : appareils gourmands en énergie tels que l'affichage numérique, l'éclairage LED, l'automatisation des bâtiments, les systèmes d'éclairage intelligents et les grands appareils PoE.     Résumé de la puissance de sortie maximale : Norme PoE Puissance de sortie maximale (PSE) Puissance disponible pour les appareils (PD) Cas d'utilisation IEEE 802.3af (PoE)  15,4 W 12,95 W Téléphones VoIP, caméras IP de base IEEE 802.3at (PoE+) 30W 25,5 W Caméras PTZ, points d'accès sans fil avancés IEEE 802.3bt (type 3) 60W 51W WAP haut de gamme, caméras PTZ, conférence IEEE 802.3bt (type 4) 100W 71,3 W Affichage numérique, éclairage intelligent, appareils haute puissance     Délivrance de puissance maximale : La fourniture d'énergie PoE la plus élevée s'effectue via IEEE 802.3bt (Type 4), qui peut fournir jusqu'à 100 W au niveau de la source d'alimentation et 71,3 W au niveau de l'appareil.   Pour la plupart des applications nécessitant une puissance élevée, PoE++ (802.3bt Type 3 ou 4) est la norme utilisée. Cela permet d'alimenter des appareils plus grands tels que des points d'accès sans fil hautes performances, des systèmes d'éclairage intelligents et de grands écrans ou signalisations sans nécessiter une source d'alimentation distincte.    
    EN SAVOIR PLUS
  • Quelle est la différence entre PoE actif et passif ?
    Oct 17, 2020
      Le PoE actif et le PoE passif sont deux méthodes de fourniture d'alimentation via des câbles Ethernet, mais elles diffèrent considérablement en termes de fonctionnalité, de sécurité et de compatibilité.   1. PoE actif Active PoE adhère aux normes officielles, telles que IEEE 802.3af, 802.3at (PoE+) et 802.3bt (PoE++). Cela implique une communication intelligente entre la source d'alimentation (commutateur ou injecteur PoE) et l'appareil alimenté (par exemple, caméra IP ou point d'accès) pour déterminer si l'appareil est compatible PoE et quelle quantité d'énergie est nécessaire. Caractéristiques clés du PoE actif : --- Basé sur des normes : suit les normes IEEE (802.3af/at/bt). --- Négociation d'alimentation : le commutateur ou l'injecteur PoE communique avec l'appareil pour fournir la quantité correcte d'énergie, évitant ainsi d'endommager les appareils non PoE. --- Tension : généralement 44-57 V pour IEEE 802.3af/at et jusqu'à 57 V pour IEEE 802.3bt. --- Compatibilité : garantit un fonctionnement sûr avec tout appareil PoE conforme à la norme IEEE, y compris une compatibilité ascendante avec les versions PoE précédentes. --- Sécurité : mécanismes de détection intégrés pour éviter de fournir de l'énergie à des appareils non PoE, réduisant ainsi le risque de dommages dus à une surtension. Applications : --- Couramment utilisé dans les réseaux d'entreprise où la sécurité, la fiabilité et la conformité aux normes sont essentielles. --- Alimente des appareils tels que des téléphones VoIP, des caméras IP, des points d'accès sans fil et d'autres appareils en réseau.     2. PoE passif Le PoE passif ne suit aucune norme spécifique et n'inclut aucune forme de négociation de puissance. Il envoie une tension fixe via le câble Ethernet, que l'appareil connecté soit ou non compatible PoE. Caractéristiques clés du PoE passif : --- Pas de négociation d'alimentation : fournit de l'énergie sans vérifier si l'appareil est compatible PoE. --- Tension fixe : fonctionne généralement à une tension fixe, généralement 24 V ou 48 V, selon le système. --- Problèmes de compatibilité : nécessite que les appareils soient spécifiquement conçus pour fonctionner avec la tension fixe. La connexion d'un appareil non PoE ou d'un appareil avec des exigences d'alimentation incompatibles peut entraîner des dommages. --- Moins sûr : puisqu'il n'y a pas de mécanisme de détection, il est plus facile d'endommager les appareils non PoE en leur fournissant accidentellement de l'énergie. Applications : --- Souvent utilisé dans les réseaux petits ou spécialisés, tels que les équipements FAI sans fil ou les configurations de réseau domestique spécifiques, où le coût est un facteur et où la négociation de puissance n'est pas nécessaire. --- Alimente des appareils tels que certains points d'accès sans fil propriétaires, des caméras et des équipements réseau extérieurs conçus pour le PoE passif.     Principales différences : Fonctionnalité PoE actif PoE passif Normes Conforme aux normes IEEE (802.3af/at/bt) Non standard (pas de conformité IEEE) Négociation de pouvoir Oui, détecte la compatibilité des appareils Non, tension fixe envoyée directement Sécurité Élevé, évite d'alimenter des appareils non PoE Faible, risque d'endommager les appareils non PoE Tension 44-57V (standardisé) Généralement 24 V ou 48 V (fixe) Applications Réseaux d'entreprise, VoIP, caméras IP Configurations du FAI sans fil, appareils spécifiques Compatibilité Compatible avec tout appareil compatible IEEE Nécessite des appareils conçus pour une tension fixe     Lequel choisir ? Le PoE actif constitue la meilleure option pour la plupart des scénarios, en particulier dans les réseaux d'entreprise, car il garantit la compatibilité, la sécurité et l'évolutivité. Le PoE passif est plus rentable mais ne doit être utilisé qu'avec des appareils spécialement conçus à cet effet. C’est plus courant dans les applications de niche ou les configurations de réseau plus petites où le coût est une priorité et où les utilisateurs sont conscients des risques.   Si vous n’êtes pas sûr de la compatibilité de l’appareil, Active PoE est le choix le plus sûr.    
    EN SAVOIR PLUS
  • Quelles sont les différentes normes PoE (IEEE 802.3af/at/bt) ?
    Oct 15, 2020
      Les normes Power over Ethernet (PoE) définissent la manière dont l'alimentation est fournie via des câbles Ethernet pour alimenter les appareils en réseau, tels que les caméras IP, les téléphones VoIP et les points d'accès sans fil. Les principales normes PoE sont IEEE 802.3af, IEEE 802.3at et IEEE 802.3bt. Chaque norme décrit les niveaux de puissance, la tension et le courant maximum pouvant être fournis aux appareils. Voici un aperçu des différentes normes PoE :   1. IEEE 802.3af (PoE) Introduit : 2003 Puissance de sortie par port : Jusqu'à 15,4 W au switch Puissance disponible pour les appareils : Jusqu'à 12,95 W (après prise en compte de la perte de puissance sur le câble) tension: 44-57V Courant maximal : 350mA Type de câble : Nécessite Cat5 ou supérieur (Cat5e, Cat6, etc.) Appareils typiques pris en charge : --- Téléphones VoIP --- Caméras IP de base (non PTZ) --- Points d'accès sans fil basse consommation Aperçu: La norme IEEE 802.3af, communément appelée PoE, fournit jusqu'à 15,4 watts de puissance par port. Après avoir pris en compte les pertes de puissance sur le câble Ethernet, environ 12,95 W sont disponibles pour alimenter l'appareil. Cette norme est suffisante pour les appareils à faible consommation tels que les téléphones VoIP et les caméras IP standard, mais peut ne pas fournir suffisamment de puissance pour les appareils avancés ayant des besoins énergétiques plus élevés.     2. IEEE 802.3at (PoE+) Introduit : 2009 Puissance de sortie par port : Jusqu'à 30W au switch Puissance disponible pour les appareils : Jusqu'à 25,5 W tension: 50-57V Courant maximal : 600mA Type de câble : Nécessite Cat5 ou supérieur Appareils typiques pris en charge : --- Points d'accès sans fil avec plusieurs antennes --- Caméras IP PTZ (Pan-Tilt-Zoom) --- Téléphones IP avancés avec vidéo --- Éclairage LED Aperçu: La norme IEEE 802.3at, connue sous le nom de PoE+, a considérablement augmenté les capacités de fourniture d'énergie via PoE, fournissant jusqu'à 30 W par port, avec 25,5 W disponibles pour les appareils. Ce budget énergétique plus élevé rend le PoE+ adapté aux appareils plus exigeants, tels que les caméras IP avancées (caméras PTZ), les points d'accès sans fil et les appareils prenant en charge la fonctionnalité vidéo.     3. IEEE 802.3bt (PoE++ ou PoE 4 paires) Introduit : 2018 Puissance de sortie par port (Type 3) : Jusqu'à 60W au switch Puissance disponible pour les appareils (type 3) : Jusqu'à 51W Puissance de sortie par port (Type 4) : Jusqu'à 100W au switch Puissance disponible pour les appareils (type 4) : Jusqu'à 71,3 W Tension (Type 3) : 50-57V Tension (Type 4) : 52-57V Courant maximal (Type 3) : 600 mA par paire Courant maximal (Type 4) : 960 mA par paire Type de câble : Nécessite Cat5e ou supérieur pour le type 3 et Cat6 ou supérieur pour le type 4 (pour des performances optimales) Appareils typiques pris en charge : --- Points d'accès sans fil haut de gamme (Wi-Fi 6/6E) --- Caméras PTZ haute puissance --- Affichage numérique --- Systèmes d'automatisation des bâtiments (par exemple, éclairage intelligent, commandes CVC) --- Postes de travail clients légers --- Systèmes POS (Point de Vente) Aperçu: IEEE 802.3bt, également connu sous le nom de PoE++ ou 4-Pair PoE, étend encore la capacité d'alimentation en utilisant les quatre paires de fils d'un câble Ethernet pour fournir l'alimentation. Cette norme comporte deux niveaux de puissance : Type 3 (jusqu'à 60 W) et Type 4 (jusqu'à 100 W). PoE++ est conçu pour prendre en charge les appareils haute puissance tels que les grands écrans numériques, les points d'accès sans fil hautes performances et même les appareils IoT dans les bâtiments intelligents.     Résumé des normes PoE Standard Puissance de sortie maximale par port Puissance maximale disponible pour l'appareil Appareils typiques alimentés Année d'introduction IEEE 802.3af 15,4 W 12,95 W Téléphones VoIP, caméras IP standards, points d'accès basse consommation 2003 IEEE 802.3at 30W  25,5 W Caméras IP PTZ, points d'accès avancés, visiophones 2009 IEEE 802.3bt (Type 3) 60W 51W WAP haut de gamme, caméras PTZ, systèmes d'automatisation des bâtiments 2018 IEEE 802.3bt (Type 4) 100W 71,3 W Affichage numérique, éclairage intelligent, appareils PoE haute puissance 2018     Choisir la bonne norme PoE pour votre réseau --- IEEE 802.3af (PoE) : Idéal pour les réseaux avec des appareils à faible consommation tels que les téléphones VoIP, les caméras IP de base et les points d'accès simples. --- IEEE 802.3at (PoE+) : Idéal pour les appareils de moyenne puissance tels que les caméras PTZ, les points d'accès avancés et les appareils nécessitant plus de 15,4 W. --- IEEE 802.3bt (PoE++) : nécessaire pour les appareils haute puissance tels que les points d'accès Wi-Fi 6, les systèmes d'automatisation des bâtiments, les grands réseaux d'éclairage LED et autres équipements gourmands en énergie.   Assurez-vous d'évaluer les besoins en énergie de vos appareils connectés et de choisir un commutateur ou un injecteur PoE prenant en charge la norme appropriée. Pour une pérennité, opter pour des commutateurs PoE+ ou PoE++ garantit que votre réseau peut gérer des appareils plus exigeants à mesure que votre infrastructure se développe.
    EN SAVOIR PLUS
  • Comment choisir le switch PoE adapté à mes besoins ?
    Oct 14, 2020
      Le choix du bon commutateur Power over Ethernet (PoE) dépend de plusieurs facteurs, notamment du type d'appareils que vous alimentez, de la taille de votre réseau, de vos besoins en énergie et de votre évolutivité future. Voici un guide pour vous aider à sélectionner le commutateur PoE le mieux adapté à vos besoins :   1. Déterminez les appareils que vous devez alimenter Type d'appareil : Identifiez les appareils que vous connecterez au commutateur PoE. Les appareils courants alimentés par PoE comprennent les caméras IP, les points d'accès sans fil, les téléphones VoIP et les capteurs IoT. Exigences d'alimentation : Différents appareils ont des besoins en énergie différents. Par exemple, les téléphones VoIP nécessitent généralement moins d'énergie (environ 4 à 10 W), tandis que les caméras IP haut de gamme ou les points d'accès sans fil peuvent nécessiter jusqu'à 30 W, voire plus. Assurez-vous que le commutateur peut gérer la demande d’énergie de tous les appareils connectés.     2. Comprendre les normes PoE et la puissance de sortie Il existe différentes normes PoE qui définissent la quantité d'énergie qu'un commutateur peut fournir à chaque appareil connecté : --- IEEE 802.3af (PoE) : fournit jusqu'à 15,4 W par port, adapté aux appareils nécessitant moins d'énergie, tels que les téléphones VoIP ou les caméras IP de base. --- IEEE 802.3at (PoE+) : fournit jusqu'à 30 W par port, idéal pour les appareils plus gourmands en énergie comme les caméras IP avancées ou les points d'accès sans fil. --- IEEE 802.3bt (PoE++) : fournit jusqu'à 60 W (Type 3) ou 100 W (Type 4) par port, prenant en charge les appareils haute puissance tels que les caméras PTZ, l'éclairage LED ou l'affichage numérique. Conseil: Assurez-vous que le budget PoE du commutateur (puissance totale disponible sur tous les ports) est suffisant pour les appareils que vous prévoyez de connecter. Par exemple, si vous devez alimenter dix appareils nécessitant chacun 15 W, votre commutateur doit disposer d'un budget d'alimentation PoE total d'au moins 150 W.     3. Nombre de ports --- Nombre actuel d'appareils : comptez le nombre d'appareils qui doivent être connectés au commutateur. Assurez-vous que le commutateur dispose de suffisamment de ports compatibles PoE pour tous les accueillir. --- Expansion future : envisagez toute croissance future. Si vous envisagez d'ajouter d'autres appareils ultérieurement, sélectionnez un commutateur doté de ports supplémentaires ou d'une capacité PoE supérieure pour éviter d'avoir à effectuer une mise à niveau prématurée. Conseil: Les commutateurs sont disponibles avec différents nombres de ports, généralement 8, 12, 24 ou 48 ports. Choisissez une taille qui correspond à vos besoins actuels avec une certaine marge pour une expansion future.     4. Budget total d’alimentation PoE --- Puissance par port : calculez la puissance totale dont chaque appareil connecté aura besoin et assurez-vous que le commutateur dispose d'un budget d'alimentation global suffisant. Par exemple, si vous connectez dix appareils PoE+ nécessitant 25 W chacun, votre switch doit disposer d'une réserve de puissance d'au moins 250 W. --- Mise à l'échelle de l'alimentation : certains commutateurs vous permettent d'adapter le budget d'alimentation avec des alimentations supplémentaires. Cela peut être utile si vous avez besoin de flexibilité à mesure que votre réseau se développe. Conseil: Assurez-vous que le commutateur PoE fournit un budget d'alimentation total supérieur à vos besoins calculés pour faire face aux surtensions potentielles ou aux futurs appareils haute puissance.     5. Gestion des commutateurs : géré ou non géré --- Commutateur non géré : Appareils simples et plug-and-play. Idéal pour les petits réseaux où aucune fonctionnalité avancée ni surveillance du réseau n'est requise. --- Commutateur géré : permet de contrôler le trafic réseau, la sécurité et les configurations. Les commutateurs gérés offrent des fonctionnalités telles que les VLAN, la qualité de service (QoS), la surveillance du réseau et le dépannage. Ils conviennent aux réseaux plus grands ou plus complexes où le contrôle du trafic et de la sécurité des données est important. Conseil: Pour les applications critiques pour l'entreprise, un commutateur administrable offre une plus grande flexibilité, sécurité et contrôle sur votre réseau.     6. Vitesse et performances du réseau ---Ethernet Gigabit : Pour la plupart des réseaux modernes, Gigabit Ethernet est la norme, garantissant une transmission rapide des données entre les appareils. Assurez-vous que votre commutateur prend en charge 1 Gbit/s par port pour des performances transparentes. --- 10 Gigabit Ethernet : si votre réseau comprend des applications à large bande passante telles que la vidéosurveillance ou les centres de données, envisagez des commutateurs dotés de ports de liaison montante de 10 Gbit/s pour des connexions dorsales plus rapides. Conseil: Pour la plupart des entreprises, un commutateur PoE Gigabit suffira, mais les liaisons montantes 10 Gigabit sont utiles si vous avez un trafic de données ou vidéo important circulant sur le réseau.     7. Commutateurs de couche 2 et de couche 3 --- Commutateur de couche 2 : un commutateur de couche 2 fonctionne au niveau de la couche liaison de données et est principalement utilisé pour transférer le trafic en fonction des adresses MAC. Convient à la plupart des réseaux de petite et moyenne taille. --- Commutateur de couche 3 : ces commutateurs offrent des capacités de routage, fonctionnant au niveau de la couche réseau et permettant le routage entre différents sous-réseaux ou VLAN. Ceci est utile pour les réseaux plus grands et plus complexes comportant plusieurs segments. Conseil: Si votre réseau se compose de plusieurs VLAN ou sous-réseaux, un commutateur de couche 3 peut offrir de meilleures performances et une meilleure gestion du trafic.     8. Fonctionnalités de planification et de gestion de l'alimentation PoE --- Planification PoE : certains commutateurs vous permettent de planifier quand allumer ou éteindre les appareils PoE, ce qui peut aider à économiser de l'énergie (par exemple, éteindre les téléphones VoIP après les heures de bureau). --- Gestion de l'alimentation : recherchez des commutateurs offrant des capacités de gestion de l'énergie, telles que l'allocation d'énergie en fonction de la priorité des appareils ou la surveillance de la consommation électrique de chaque appareil en temps réel. Conseil: Si l’efficacité énergétique est une priorité, optez pour des commutateurs dotés de fonctionnalités avancées de gestion de l’énergie.     9. Redondance et fiabilité --- Alimentations redondantes : dans les applications critiques, envisagez des commutateurs prenant en charge les alimentations redondantes. Cela garantit que le commutateur reste opérationnel même en cas de panne d'une source d'alimentation. --- Conditions environnementales : si vous déployez des commutateurs dans des environnements difficiles ou extérieurs, recherchez des commutateurs robustes de qualité industrielle capables de résister à des températures, une humidité ou des vibrations extrêmes. Conseil: Pour les environnements critiques tels que les applications industrielles ou les installations extérieures, sélectionnez des commutateurs robustes avec redondance d'alimentation intégrée.     10. Fonctionnalités supplémentaires --- Prise en charge VLAN : les réseaux locaux virtuels (VLAN) vous permettent de segmenter votre réseau en différents groupes, améliorant ainsi les performances et la sécurité. Ceci est particulièrement important dans les environnements vastes ou sensibles en matière de sécurité. --- Qualité de service (QoS) : la qualité de service donne la priorité à certains types de trafic, tels que la VoIP ou la vidéo, garantissant que les données sensibles au facteur temps transitent sans délai. --- Agrégation de liens : cette fonctionnalité permet de combiner plusieurs liens Ethernet en un seul lien logique pour augmenter la bande passante et assurer la redondance. Conseil: Pour les réseaux avancés avec caméras IP ou VoIP, donnez la priorité aux fonctionnalités telles que le VLAN, la QoS et l'agrégation de liens.     11. Marque et garantie --- Fabricants réputés : tenez-vous-en à des marques de confiance telles que Cisco, Huawei, Ubiquiti, H3C, Netgear et Benchu Group. Ces fabricants proposent des commutateurs PoE de haute qualité avec une assistance et des mises à jour fiables. --- Garantie et assistance : vérifiez la période de garantie et les options d'assistance disponibles, en particulier pour les réseaux critiques. Certaines marques proposent des garanties prolongées et un service client réactif. Conseil: Investir dans une marque réputée peut coûter plus cher au départ, mais peut réduire le risque d'indisponibilité du réseau et offrir une meilleure fiabilité à long terme.     Conclusion Choisir le commutateur PoE adapté à votre entreprise implique d'évaluer vos besoins réseau actuels et futurs, notamment les types d'appareils que vous alimenterez, le budget énergétique total, la taille du réseau et les fonctionnalités avancées. Tenez compte de facteurs tels que la vitesse du réseau, l’évolutivité et la facilité de gestion du commutateur. Pour la plupart des entreprises, un commutateur PoE+ géré Gigabit avec une marge d'extension sera suffisant, mais les réseaux plus avancés peuvent nécessiter un routage de couche 3, des liaisons montantes de 10 Gbit/s ou des budgets PoE plus élevés.    
    EN SAVOIR PLUS
1 2 40 41 42 43 44 45 46 47 48 49
Un total de 49pages

laisser un message

laisser un message
Si vous êtes intéressé par nos produits et souhaitez en savoir plus, veuillez laisser un message ici, nous vous répondrons dès que possible.
soumettre

Maison

Des produits

WhatsApp

Contactez-nous